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1. Nov 3, DEFINITION OF SHEAF COHOMOLOGY

Definition 1.1. Let A be a commutative ring. An A-module L is injective if it
satisfies the following equivalent conditions:

(1) Hom(e, L) is right exact.

(2) For all injective homomorphism 7 : X’ — X and for all homomorphism
/' X" — L, there exists a homomorphism f : X — L such that foj = f'.

(3) For all ideals I of A and for all homomorphism f : I — L, there exists u € L
such that f(a) = au for all a € I.

Proof. We only prove (3) = (2).

Let j : X’ — X be an injective homomorphism and let f’ : X’ — L be a homo-
morphism. Define the set S of pairs (Y, g) of A-module Y with a homomorphism
g Y — L such that j(X') C Y C X and (g];x)) oj = f'. S is partially or-
dered by defining (Y,g) < (Y',¢) if Y C Y’ and ¢'|ly = g. Then S # () because
(J(X"), f) € S. Also any totally ordered subset (Y,,g,) of S has an upper bound
(UYa, G) with Gly, = go- By Zorn’s lemma, S has a maximal element (Yo, go).

Next, we want to show that Yo = X. If Y C X, take x € X'\ Y}. Define an ideal
I'={a€ A|azx €Yy} of Aandahomomorphism h: I — L, h(a) = go(azx). By (3),
there exists u € L such that h(a) = go(ax) = au for all a € I. Let Y7 = Yo+ Az and
g1:Y1 = L, 1(y+ax) = go(y) + au for all y € Yy, a € A. Then (Y, g0) < (Y1,91)
and (Y1,g1) € S, which contradicts the maximality of (Yp, go). Therefore Yy = X
and we take f = gg. O

Example 1.2. Q/Z is an injective abelian group.
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Proof. Abelian groups are Z-modules. We verify Definition 1.1(3). For zero ideal
it is trivial. Let (n) be an nonzero ideal of Z. Let f : (n) — Q/Z be a Z-
homomorphism. Suppose f(n) = ¢+ Z for some ¢ € QN [0,1). Let u = %q + Z.
Then for all m € Z, mn € I and f(mn) = mqg + Z = mnu. 0

Let L be an A-module. Let L = Homg(L,Q/Z). Let L = Homgz(L,Q/Z). Then
we have a homomorphism iy, : L — L defined as follows: For all z € L and fe E,
(ir(2)(f) = ().

Lemma 1.3. iy : L — L is an injective homomorphism.

Proof. Suppose x € L and x # 0. Let (z) be the cyclic abelian group generated by
x. Then (x) is a subgroup of L. When z has order n, we define g : (z) — Q/Z,
g(z) = 1 +7Z. When z has infinite order, we define g : (z) = Q/Z, g(z) = § + Z.
By Example 1.2, Q/Z is injective, there exists a homomorphism f : L — Q/Z
such that f|y =g and f(z) = g(z) # 0. O

Lemma 1.4. If L is projective, then Lis injective.

Proof. Let j : X’ — X be an injective homomorphism. Let f : X' — L be a
homomorphism. Since Q/Z is injective, by Definition 1.1(1), j : X — X’ defined

by E(Q) = g o j is surjective. We also have f: L — X'. Since L is projective, there
exists h: L — X such that joh = foir.

Bl

F

~ =t

X I, X ——=0
Then we have h : X — L. By Lemma 1.3, ix : X — X is an injective homomor-
phism. Then for all 2’ € X’ and [ € L, we have

((hoix o) @))(l) = (ix (") (h(D) = ((1)(i(z") = (G o W) D))

= ((fed)D) (") = (D)(f() = F=") D)

Therefore h o i x oj = f and hence L is injective.
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Proposition 1.5. Let A be a commutative ring. Any A-module is isomorphic to
a submodule of an injective A-module.

Proof. Let L be an A-module. There exists a projective module P with a surjection

m:P— L. Then, 7 : L— Pisan injection. By Lemma 1.3 we have an injection
moi: L — F. By Lemma 1.4, F' is an injective A-module. 0

Let X be a topological space.

Fact 1.6. Let F,G, H be sheaves of abelian groups on X. Then F % G 5 His
exact iff F, 2% G, LEN H, is exact for all z € X.

Proof. Omit. O

Let Ox be a sheaf of rings on X. Let Mod(Ox) be the category of sheaves of
O x-modules.

Theorem 1.7. Mod(Ox) has enough injectives.

Proof. Let % be a sheaf of Ox-module.

(1) Construct a sheaf I. Then for all z € X, .%, is a Ox z-module. By Propo-
sition 1.5, there exists an injective Ox z-module I with an injection i, : Fy, — I,
Then I, is a sheaf on {z}. Suppose j, : {x} — X is the inclusion map. Then (j, ). I,

is a sheaf of Ox-module. Let I = [] (jz)«Iz. Then I is a sheaf of Ox-module.
reX
(2) Construct an injection ¢ : &% — I. Since

Hompnjoq(0y) (F, 1) = Homppod (o) (F) H (Ju)s1z)
zeX

~ H Hompgoda(o) (F, (Ju)sle) =~ H Homoy , (Fy, 1)
zeX zeX

There exists a morphism ¢ : % — I whose morphism on stalks are (i,),ecx. Since
i, are all injections, by Fact 1.6, ¢ is an injection.
(3) Show that [ is an injective sheaf. Hompioq(oy)(®, 1) is formed by three kinds

of functors e,, Home, ,(e,1;) and [] e. By Fact 1.6, e, is exact for all 2 € X.
reX
Since I, is injective, by Definition 1.1, Homo, , (e, I,) is exact for all z € X. Also,
the product J] e of exact functors is exact. Therefore Hompgoq(oy)(®, I) is exact.
reX
By Definition 1.1, I is injective. O

Let Ab be the category of abelian groups. Let Ab(X) be the category of sheaves
of abelian groups on X.

Corollary 1.8. Ab(X) has enough injectives.

Proof. Let Ox be the locally constant sheaf of rings Z. Then the result follows
from Ab(X) = Mod(Z) and Theorem 1.7. O

Lemma 1.9. The global section functor I'(X,e) : Ab(X) — Ab such that
I'X,7) =% (X) is left exact.
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Proof. Suppose 0 — % %G L H — 0 is exact. We want to show that

0—.Z(X) %5 G(X) X H(X)
is exact.

ix is injective. In fact, suppose s € .#(X) such that ix(s) = 0. Then i,(s;) =
(ix(s))z = 0 for all x € X. By Fact 1.6, s, = 0 for all z € X. For each z € X,
there exists an open neighborhood U, of = such that s|y, = 0. Since (Uy)zex is an
open covering of X and .% is a sheaf, s = 0.

ker(gx) D Im(ix). In fact, suppose s € F(X), let t = qx(ix(s)) € H(X).
Then t, = ¢, (i.(sz)) = 0. For each x € X, there exists an open neighborhood U,
of x such that t|y, = 0. Since (U,)zex is an open covering of X and H is a sheaf,
t=0.

ker(¢x) C Im(ix). In fact, suppose s € G(X) such that gx(s) = 0. Then
Gz (8z) = (¢x(8))z = 0 for all x € X. By Fact 1.6, s, = i, () for some t, € Z,
for all x € X. Then there exists an open neighborhood U, of z and ty, € % (U,)
such that $|Um = iUm (tUz)- If Um N Uy 7£ @, then iUmﬁUy (tUm|UzﬁUy — tUm|UxﬁUy) =
slv,nv, — slu.nu, = 0. Since i is injective, ty, |v,nv, = tu,|v.nu,. Since .Z is a
sheaf and (U, )zecx is a covering of X, there exists t € .#(X) such that t|y, = ty,.
Since (ix (¢)|v, = v, (tlv,) = v, (tv,) = s|lu, for all z € X, G is a sheaf and
(Uy)zex is a covering of X, we have ix(t) = s. O

Example 1.10. T'(X,e) : Ab(X) — Ab is not necessarily right exact.

Let X = C* with analytic topology. Let Z be the locally constant sheaf asso-
ciated to Z. Let O be the sheaf of holomorphic functions. Let O* be the sheaf of
invertible holomorphic functions. Then we have an exact sequence

07 22V 0 &P v .

Foral w e C, Z,, = Z, Oy = {f : Uy — C | 3f'(2),Vz € Uy} and OF = {f :
Uy — C | 3f'(2),Vz € Uy, f(w) # 0, }, where U, is some open neighborhood of w.

07 22V Ow 22 05 -0

is exact at Z and O, because ¢2™V~1 = 0. And exp is surjective because let

g(z) = In(f(z)) on a neighborhood of w such that In is a well-defined logarithm
!

function on a band neighborhood of f(w) of width 2. Then ¢'(w) = f(w)

f(w)
and hence ¢ is a inverse image of f.
However, exp : O(C*) — O*(C*) is not surjective because Idc+ € O*(C*) does
not have an inverse image. If not, there exists f € O(C*) such that e/ = Idc-, then

Flem\(Coo0)(re?Y 1) = In(r) + v/ =1 + 2n7v/—1
for some n € Z, where r > 0 and —7w < 0 < 7;
f C*\(o,+oo)(7“€6,ﬁ) =In(r) + 0'vV—1+ 2mmyv/—1

for some n € Z, where r > 0 and 0 < 6’ < 27.
f0<6=0 <m,thenn=m. If —-vr <6 =60+2r <0, then n = m — 1.
Contradiction.

exists
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Definition 1.11. Let X be a topological space (By Corollary 1.8, it has enough in-
jectives). Let T'(X, o) : Ab(X) — Ab be the global section functor (By Lemma 1.9
it is left exact). Define

H'(X,e) = R'T(X,e): Ab(X) — Ab, i =0,1,...

be the sequence of right derived functors of I'(X, e). Let .# be a sheaf of abelian
groups on X. Then H!(X,.7) is called the i-th sheaf cohomology of .%.

Remark 1.12. (1) Definition 1.11 provides the first way to calculate sheaf coho-
mology. Let .# be a sheaf of Ox-module. Let 0 - # — I° = I' — ... be a
injective resolution of .%. Apply I'(X, e) to the resolution, we obtain a complex

0—I(X, 1% = T(X,I") — -

The usual i-th cohomology of this complex is h(['(X, I*)) ~ H (X, 7).
(2) The disadvantage of (1) is that: Despite that there are enough injectives,
there are still “too few”. That is why we need flasque sheaves.

Definition 1.13. Let X be a topological space. Let .7 be a sheaf of abelian groups
on X. We say that .7 is flasque if for all inclusion of open sets V C U in X, the
restriction #(U) — % (V) is surjective.

Fact 1.14. Let U be an open set of X. Let j : U — X be the inclusion map. Let
71(Z) be the sheaf associated to the presheaf

F(V), VCU;
VH{O, VU

Then for all x € X
) = G, x €U,
v 0, xz & U.

Proof. Omit. O

Lemma 1.15. Let Ox be a sheaf of rings on X. Let U be an open set of X with
inclusion j : U — X. Write Oy = 5(Ox|U). Then for all sheaf of Ox-modules G,

Hommoa(ox)(Ov, G) = G(U).
Proof. Define a : Homyiod(0)(Ov,G) — G(U). For all natural transformation
f: Oy — G and for all open subset V' C U, there exists fy : Oy(V) = Ox (V) —

G(V) commuting with restrictions. In particular, we have fy : Ox(U) — G(U),

define a(f) = fu(1).

Define 8 : G(U) — Hompoqa(0x)(Ov,G). For all g € G(U) and for all open
subset V C U, g|V € G(V). Define (g) : Oy — G such that 5(g)v(z) =z - g|V
for all z € Oy (V) = Ox (V).

For all f € Hompioq(0y)(Ov,G), V open in U and = € Oy (V),

Bla(Nv(@) =z (a(HIV) =z fuMV =z fv(1) = fv(z),

Hence foa =1d.
Conversely, for all g € G(U),

a(B(9) =Bglu(1) =1-g|U =g,
Hence a0 g = 1d.
This is basically like the proof of Yoneda lemma. O
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The next lemma shows that there are “more” flasque sheaves than injective
sheaves.

Lemma 1.16. Let Ox be a sheaf of rings on X. Any injective Ox-module is
flasque.

Proof. Suppose V' C U is an inclusion of open sets in X. By Fact 1.14, the inclusion
gives the canonical injection Oy — Op. Let I be an injective sheaf of Ox-module.
By Definition 1.1, there exists a canonical surjection

Hompoa(0y)(Ou, 1) = Hommeaox) (Ov, 1)
By Lemma 1.15, this surjection is identified with the restriction I(U) — I(V). O
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2. Nov 10, SHEAF COHOMOLOCY AND FLASQUE RESOLUTION

Review: Let X be a topological space. Let Ox be a sheaf of rings on X.
(1) Mod(Ox) has enough injectives. e.g. Ab(X).
(2) T'(X,e) : Ab(X) — Ab is left exact. e.g. 0 > Z - O — O* — 1 on C*.
(3) H"(X,e) = R"I(X,e). e.g. H'(X, ) =T(X, Z).
(4) A sheaf .Z is flasque if the restriction .7#(U) — # (V) is surjective for all
inclusions of open sets V' C U. e.g. injectives sheaves of Ox-modules.

Definition 2.1. A sheaf of Ox-module .# is acyclic if H"(X,.%#) = 0 for all
n>1.

Example 2.2. Let [ be an injective sheaf of Ox-modules. Then 0 - I — I — 0
is an injective resolution of I. We obtain a complex 0 — I'(X,I) — 0. Hence
H™(X,I)=0 for all i > 1. Hence, injective sheaves of Ox-modules are acyclic.

Next we want to show that flasque sheaves of Ox-modules are acyclic. Fix
the following notations for Lemma 2.3, Lemma 2.4 and Theorem 2.5. Let .# be
a flasque sheaf of Ox-module By Theorem 1.7, there exists an injective sheaf of
Ox-module I with an injection i : .% — I. Let G = coker(¢). Since Mod(Ox) is
an abelian category, G is a sheaf. Then we have an exact sequence

07515650

Lemma 2.3. 4
0—.Z(U) %L 1U) X GU) =0

is exact for all open set U of X.

Proof. By Lemma 1.9, it suffices to show that gy is a surjection. Suppose s € G(U).
Let T={(V,t) |V CU, teI(V), qv(t) = s|y}. Define (V,t) < (V'¢')if V C V'
and t'|y = t. First, T # 0 because (0,0) € T. Second, any totally ordered subset
(Va, to) has an upper bound (|JV,,t) with t|y, = t, as I is a sheaf. By Zorn’s

«
lemma, T has a maximal element (Vj, to).

We want to show that V; = U and hence ¢y is an inverse image of s. If
not, then there exists z € U \ Vj. Since ¢, : I, — G, is surjective, there ex-
ists an open neighborhood W of z and ¢’ € I(W) such that gw (t') = s|w. Since
awnv, (bolwnve —t' lwnve) = slwove — slwnv, = 0, there exists v’ € #(WNV,) such
that iwnv, (') = tolwnve — t'|lwnv,- Since .F is flasque, the restriction F# (W) —
F (W N V) is surjective. Then there exists r € .# (W) such that r|wqy, = r'. Let
t" =t +iw(r). Then t"|lwnav, = t'lwave + iw (r)|lwnve = folwnv,. Since I is a
sheaf, to and t" are glued to t € I(W U Vj). We have (Vo,t0) < (WU Vp,t) €T, a
contradiction. Therefore Vo = U and gy (t) = s. O

Lemma 2.4. G is flasque.

Proof. Suppose V' C U is an inclusion of open sets in X. By Lemma 2.3, we have
a commutative diagram with exact rows:

0 —— Z(U) 1(U) G(U) 0
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where a, b, c are restrictions. By Snake lemma, we have an exact sequence
-+« — coker(b) — coker(c) — 0.

Since I is injective, by Lemma 1.16, it is flasque and hence coker(b) = 0. Therefore
coker(c) = 0, i.e. G is flasque. O

Theorem 2.5. Flasque sheaves of Ox-modules are acyclic.

Proof. Let .Z be a flasque sheaf of Ox-module. We want to show that H" (X, .%#) =
0 for allm > 1.

We use induction on n. Let I, G be as above. Let I9 = I. Let I' be an injective
Ox-module containing G. Then 0 — .% — I° — I' — ... gives a complex

d° 1y dt
0-T(X,I) -T'(X,I") — -

So
ker(d') G(U)
HY U, Z) = = =
P = @) ~ o)
for all open set U of X. In particular, H*(X,.%) = 0.
Suppose the n-th cohomology vanishes for all flasque sheaves. In particular,
H"(X,.7) =0. We need to show that H"T(X,.#) = 0. The short exact sequence
0— % — I — G — 0 gives a long exact sequence

s HY(X, 1) = HY(X,G) —» H""N (X, F) - H""N (X, 1) — ---

Since [ is injective, by Example 2.2, H""}(X, ) = 0. By Lemma 2.4, G is flasque.
By inductive hypothesis, H"(X, G) = 0. Therefore H"*1(X, %) = 0. O

Fact 2.6 (Horseshoe). Let C' be an abelian category with enough injectives. Let
. 0 1
0— A 5 A5 & A5 — 0 be an exact sequence in C. Let 0 — A % 19 2, I} 2,
0 1
~and 0 — Az 5 I9 5 I} < -+ be two injective resolutions. Then there exists

0 1
an injective resolution 0 — A, LN 19 L I3 Y, ... and horizontal morphisms such
that the following diagram is commutative with exact columns and split-exact
rOWS.

0 0 0
[ p
0 Ay Agy As 0
a b c
0 PO
0 i i i 0
a® v° 0
it pl
0 1} 5 I} 0
at bt ct

Proof. Omit. (]
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Lemma 2.7. Let C*® be a complex in an abelian category with enough injectives.
Then there exists an injective resolution

0—C® =10 51t ...
such that
0— ZP(C®) — ZP(I*°) — ZP(I*1) — - -~
0 — BP(C*) — BP(I*°) — BP(I*') — - .-
0 — hP(C®) — hP(I*0) — RP(I%') — - --
are injective resolutions (i.e. Cartan-Eilenberg resolution exists).

Proof. We use Z for kernels, B for images and h for usual cohomologies.

First, we select injective resolutions for B?(C*®) and h”(C*) for all p.

Since 0 — BP~Y(C*®) — ZP(C*®) — h?(C*) — 0, by Fact 2.6, we obtain an
injective resolution for ZP(C*) for all p.

Since 0 — ZP(C®) — CP? — BP(C®) — 0, by Fact 2.6, we obtain an injective
resolution for C? for all p. O

Acyclic sheaves of Ox-modules provides a second way to calculate sheaf coho-
mology.

Theorem 2.8 (De Rham-Weil). Let % be a sheaf of Ox-module. Let 0 — F —
JO — J' — ... be a acyclic (e.g. flasque) resolution of .F. Apply T'(X,e) to the
resolution, we obtain a complex

0—-TI(X,J% = T(X,J") = -
The usual i-th cohomology of this complex is h*(L'(X, J®)) ~ H (X, 7).

Proof. By Lemma 2.7, let the following be an injective resolution of 0 — F — J°.

0 It 70,1 Il 721

0 70 70,0 J1.0 720

0 F JO Jt J?
0 0 0 0

By Lemma 1.9, T'(X, o) is left exact, apply it everywhere, and replace the left column
and the bottom row with 0, then we have a double complex C?? = T'(X, I??) in
Ab.
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(2.9)

0——I(X, %) —T(X, I") —=T(X, [>!) —— -

OHF(X,IO’O) HF(X,ILO) HF(X,IQ’O) _—

0 0 0

First, we take the vertical spectral sequence. Let ,Ef'? = CP4. Since JP are all
acyclic, we have

EPY — F(Xv Jp)7 q=0;
vl 0, q > 0.
Then
pra _ [ PEET), g =0;
U2 0, qg>0.
Hence ,EY? = EP® and ,ES? = hWPt9(T(X, J*)).
Next, we take the horizontal spectral sequence. Let ,Ef? = C%P. Since 0 —

—1 0
F Ly oLy gl ... s exact, we have Z? = BP~! for all p > 0. Let 0 —
Zp — 7P0 — ZPl 5 ... be an injective resolution of ZP. By the construction of

Lemma 2.7, I[P = Z0P [P = Z9P @ Z9T1P and the homomorphism
IP = 74P @ zatLp _y Jatlp — gatle g zat2p (z,y) — (y,0)

has kernel Z? and image Z9"1? for all p,q > 0. Hence h(I*?) =0 for all ¢ > 1.
Then 0 — IP — [%P — [YP — ... is injective resolution of the injective I?. By
Example 2.2,

I'(X,17), q¢=0;

WEPT = hI(D(X, 7)) = { . 0

Then
P,q hp(F(XaI.)):Hp(va)v p:07
}LE27 =

0) P> 0.

Hence , EYY = , ER® and , EY? = HPTI(X, 7).
Finally, since two spectral sequences of the same double complex have isomorphic

abutment, we have

WI(X, J*) = HY (X, 7)

for all n.
O

Example 2.10. If X is an irreducible topological space with a locally constant
sheaf of abelian group A, then H"(X, A) =0 for all n > 1.
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Proof. Since X is irreducible, every nonempty open subset of X is connected. For
all inclusion of open subsets V. .C U, A(U) - A(V)isIld: A - Aor A — 0 or
0 — 0. All three possibilities are surjective. Then A is flasque. By Theorem 2.5,
H"(X,A)=0for all n > 1. O

Remark 2.11. Sheaf cohomology is “bad”, because by Example 2.10, it does not
do anything even on constant sheaves. We need a better one (étale cohomology).

Despite that there are “more” flasque sheaves and even “more” acyclic sheaves,
sheaf cohomology is still hard to compute. That is why we need Cech cohomology,
which are easier to compute.

Definition 2.12. Let % = (U;)iesr be an open covering of X whose index set I

has a well—ordem’ng(i.e. totally ordered such that every nonempty subset has a least

element). Let .# be a sheaf of Ox-modules. If W is an open set of X with inclusion

Jw : W — X then (jw)«(F|W) is a sheaf on X such that (jw)«(-Z|W)(U) =
F(UNW) for all open set U C X. Let

%n(%’ﬁ) = H (jUioﬁ'“ﬁUin)*(‘gz|Uiom"'mUin)'
10<i1<--<ip in [
For all z € X, define 07 : € (%, F ) — €U, F), as follows. Suppose
x € U;, . Let V be an open neighborhood of z in U;, and let
seC (U, F)V)= 11 r(VnU,N---NU;, ,%)

i0<iy <-+<ip in I

n
an( Cyin41 = Z ,",i;,"',in+1|vai0m...Uij...mUin-f—l

7=0
We simply write

n

n
83:(‘/510 “in41 E ’ 10...11..‘17&1

7=0
Fact 2.13. (¢™,0") is a complex in Mod(Ox).
+(=

Proof. Sketch: 9% = S ((—1)7T¢=1 4 (—1)7*F)... =0 0
J.k
Lemma 2.14.
0
057 56w, 7) S ¢\ (w,7) %
is exact (called the Cech resolution of .7).

Proof. 1t suffices to show that

20
0= Fp = CU, F), 25 € U, ),
is exact for all x € X.

Suppose = € U;, , define k7 : €"(% ,F)x — € YU, F):: Let V be an open
neighborhood of = in U;, and s € €"(%,Z)(V), let k"(s) € €Y%, F)(V)
satisfy

(kg(s))io ----- ip_1 — (S|Uim N Uio n...N U7477, 1)
We simply write
Ky (Vy8)igin_y = (V3 8)ipn igrrin-
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Then
(0771 ok + kgt 0 01) (V. 8))io,.. i
= YWV, 8) s i, O (Ve8)imioin
= :
jn . n+1 .
= E (_1)j (Va 5)1 [T Py + Sigin + Z (_1)J(Va 8)1. iO‘..i/.\.ui
jIO ms J n j:1 my j—1 n
= N (CVIVi8)y, s, + Sigetn 2 (“DH(Vis), o
7=0 ’ =0
1=j—1
= (Vi8)igin

Then 6"‘1 Okn+kn+1 0d™ = 1Id. Hence Idm%(go(@ﬁg)) = hn(Id(go(%,g:)) = hn(O) =
0. Therefore h™(6¢*(% ,%#)) = 0 for all n > 1. The sequence is exact at first two
terms since .% is a shealf. (]

Definition 2.15. Apply I'(X, ) to the Cech resolution, we have a complex I'(X, €*(% , F)).
We write H*(% , %) = h""(T(X,€* (% , F))).
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3. Nov 17, SHEAF COHOMOLOGY AND CECH COHOMOLOGY

Review: Let X be a topological space. Let Ox be a sheaf of rings on X.

(1) An Ox-module .Z is acyclic if H™"(X,.%#) = 0 for all n > 1. e.g. flasque
sheaves of Ox-modules; the locally constant sheaf A on an irreducible topo-
logical space X, where A is an abelian group.

(2) De Rham-Weil theorem: If 0 — % — J° — J! — ... is an acyclic
resolution, then A™(I'(X, J*)) ~ H"(X, 7).

(3) Let Z = (U;) be an open covering of X. Let

0=.F =CNU,F)—>C (U, TF)— -

be the Cech resolution. Let cY(%,7)=1(X,¢"(%,%)). The n-th Cech
cohomology is defined to be H™(% , %) = h"(C* (%, F))

Fact 3.1. Let % be a sheaf on X. Let U be an open set of X. If % is flasque,
then Z|U is flasque.

Proof. For all inclusion of open sets V' C W in U, the restriction

(ZIU)W) =FW) = F(V) = (Z|U)(V)
is surjective. [
Fact 3.2. Let f: X — Y be a continuous map. Let .# be a sheaf on X. Let f..7

be the sheaf on Y such that f,.#(U) = F(f~1(U)) for all open set U of X. If &
is flasque, then f,.% is flasque.

Proof. For all inclusion of open sets V C U in Y, since f is continuous, f~*(V) C
f~Y(U) is an inclusion of open sets in X. Since F is flasque, the restriction
F(f7YU)) = Z(f1(V)) is surjective, i.e. fo. 7 (U) — f.. 7 (V) is surjective. O
Fact 3.3. If .%; are flasque sheaves for all i € I, then [] .%; is a flasque sheaf.
icl
Proof. For all inclusion of open sets V C U in X, since .%; is flasque, %;(U) —
Z;(V) is surjective. Then [[ % (U) — [] Z:(V) surjective. O
icl il
Proposition 3.4. H"(% ,e) = R"H°(% ,e) : Mod(Ox) — Ab.

Proof. Tt suffices to show that H"(% ,e) is a universal §-functor. It is a d-functor
since it is cohomology of a cochain complex. We show that H"(% ,e) is effacable.
Since Mod(Ox) has enough injectives, it suffices to show that for all injective
Ox-module I, H*(%,I) =0 for all n > 1.

By Fact 3.1, Fact 3.2 and Fact 3.3,

(U, F) = 11 (JUign-nus, )« (F Uiy O -0 U;,)

10<i1<--<ip in I

is flasque. By Theorem 2.8, H™(%,I) = H™(X,I). Finally, by Example 2.2,

H"™(X,I) = 0. Therefore H"(% ,e) is effacable. O
Note that C"(%, %)= ] % U, N---NU;,), from now on, we extend our
ig< e <ip

definition of Cech cohomology to
H"(%,e) : PreMod(Ox) — Ab
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Let ¢ : Mod(Ox) — PreMod(Ox) be the inclusion/forgetful functor. Then
[(U,e) = I'pie(U, @) 0 ¢ where I'p,. (U, o) is the presheaf global section functor for
all open set U of X,.

Lemma 3.5. Then for all F' € Mod(Ox) and 'y (U, R1L(F)) ~ HI(U, F).

Proof. Let G1 = ¢, it is left exact. Let Go = T'e(U,o) : PreMod(Ox) —
Mod(Ox). Then G is exact and hence RPGy = 0 for all p > 1. If I is an
injective Ox-module, then ¢(I) is 'y (U, ®)-acyclic.

By Grothendieck spectral sequence,

EY? = RPGy(RYG1(F)) = LPT1 = RPT1(Gy 0 G1)(F),

Frpta
where E5? =0 for all p > 1. Then EY? = ED1 = Tl We have
Flppte — p2ppta — ... — prtatlppta _

When p = 0, we have D(U, RU(.F)) = R°Go(RIG,(F)) = Ev? = E% =

FOLp+a
T = L7 = RUTU(F)) = RI(D(U, %)) = HI(U, 7). O

Lemma 3.6. Let % = (U;)ic; be an open covering of X. There exists an exact

sequence
EPY = [P(% , R1(F)) = HPHI(X, F).

Proof. Let G1 = i and Gy = H(%,e). If I is an injective Ox-module, then by
Proposition 3.4, «(I) is HY(% ,e)-acyclic.
By the Grothendieck spectral sequence,

EY? = RPGy(RIG1(F)) = LPT1 = RPTI(Gy 0 G1)(F),
By Proposition 3.4, EY? = RPH(% , #)(RI(F)) = HP (%, R1(F)). Also
LPTe = RPTI(H (% 8) 01)(F) = RPT[(X,e))(F) = H'TI(X, 7).
[
Theorem 3.7. If HY(U;,.#) = 0 for all U; and q > 1, then HP(%,u(F)) ~
HP (X, F) for allp > 0.

Proof. By Lemma 3.5, T'pe(U, RIL(F)) ~ HY(U,.#) = 0 for all ¢ > 1. Then
C*(%,R% (%)) = 0. By Lemma 3.6,

EYY = HY(% , R'W(F)) = L' = H"" (X, .7).

v 0 Fr[Lpta
Hence £5* =0 for all ¢ > 1. Then 0 = E5"" = B4 = Frrilrta for all p and for
all g > 1. Then LP = FOLP = F'[P = ... = FPLP,
. EFPLP
,0
Then HP (% ,(F)) = EY :E&O:FHILP =[P = AP(X, F). O

Example 3.8. H'(P{,Z) = Z.

Proof. Let 7w : C%\ {(0,0)} — P{ be the canonical quotient map. Let Uy =
{m(x0,21) | o # 0}. Then Uy ~ AL, m(zo,21) H=uw. Let Uy = {m(zo, 1) | 21 #
0}. Then Uy ~ AL, w(zo,z1) — 20 :=y. We have Uy N Uy = P\ {m(1,0),7(0,1)}
has two connected components.
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Since Uy, Uy ~ A} are irreducible, by Example 2.10, H*(Uy, Z) = 0 and H* (U1, Z) =

0 for all 4 > 1. Let % = (Uy,U1). Then
C%,2) =T (o, Z) ®T(V1,Z) = L& Z,
CYu.,2)=T(UsNU1,Z)=L&L,
d’(a,b) = (a —b,a —b)
The complex is
0 %%, 2) L M. z) =0

Finally, by Theorem 3.7,
CY(%,z) _LaZ

1/l ~ 77l _

O

Definition 3.9. An open covering %' = (UJ’»)jeJ is called a refinement of Z =
(Ui)ier if there exists a map ¢ : J — I such that UJ'- C Uy

Fact 3.10. (1) If p: J — I gives a refinement %' = (U}) ey of Z = (U)ic1, then
there exists a homomorphism ¢, : H"(%', %) — H"(% , F).

(2) If p1,¢" : J — I give two refinements %' = (U])jes of % = (Ui)icr, they
give the same homomorphism ¢. = ¢, : H*(%',.%) - H" (% ,.F).

(3) Cohomology groups of open coverings and corresponding homomorphisms of
refinements form a directed system.
Proof. Omit. O

Definition 3.11. The Cech cohomology of presheaf .Z of O x-modules is
H"(X,Z) =lim H"(%,F).
—
Lemma 3.12. There exists an exact sequence
EY9 = AP(X, R1(F)) = HPT (X, F).
Proof. Let Gy =i and Gy = ﬁO(X, o). Let I be an injective sheaf of Ox-modules.
Since «(I) is H°(% ,e)-acyclic for all %, «(I) is H°(X, e)-acyclic.
By Grothendieck spectral sequence,
Eg,q = RPGQ(Rqu(ﬁ\)) = [PT9 = Rerq(Gz o Gl)(ﬁ),
where ELY = RPHO(X, @) (RI4(.F)) = H?(X, R%(.F)) and
[P = RPT(HO (X, 0) 01)(F) = RPTYT(X,0))(F) = HPTI(X, F).
O

Definition 3.13. Let % be a presheaf. Its sheafification #.% is a sheaf, for all

open set U, (#%)(U) consists of sections s : U — [[ Fp such that
PeU
(1) s(P)e Fpforall PeU.

(2) For all P € U, there exists an open neighborhood V of P in U and t € Z# (V)
such that tg = s(Q) for all Q € V.

Fact 3.14. The sheafification functor # : PreMod(Ox) — Mod(Ox) is exact.
Proof. Sketch: Since h_II}l is left exact and (2) above. O
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Lemma 3.15. H°(X, R9(.F)) =0 for all ¢ > 1.

Proof. By Fact 3.14 RP# = 0 for all p > 1. In particular, if I is an injective sheaf
of Ox-modules, then ((.7) is #-acyclic.
By the Grothendieck spectral sequence,

YT = RP(RI(F)) = LPH0 = RV (# 00)(F),

where EY? = 0 for all p > 1. Also L™ = R"Id(#) = 0 for all n > 1 because
Id is exact. Then #(R%(ZF)) = Ey? = E% = 0 for all ¢ > 1. Therefore
HOY(X,R1(F)) = Tpre(X, RU(F)) = T(X, #(R%(F))) = 0 for all ¢ > 1. O

Theorem 3.16. For all F € Ab(X),
(a) HO(X,((F)) = H'(X, 7)
(b) HY(X,u(F)) ~ H (X, .F)

(c) There exists and exact sequence

0= H*(X,u(F)) = H*(X,.7) = H' (X, R'"(F)) — H*(X,(F))
Proof. By Lemma 3.12 and Lemma 3.15, there exists an exact sequence
EYY = 0P(X,R1(F)) = LPT1 = HPY(X, 7).
such that EY? = 0 for all ¢ > 1.

(3.17)

0 0 EL? E>?

0 0 0 0
- FOLO
(a) HO(X7L(9)):E370:E2<730: FlLO :LOZHO(XVQ)
F'L}!
(b) HY(X,(F)) = Ey° = EL0 = 27T = Firt

, FOL'  HYX,Z#
Since 0 = Bt = EO! = i = Rl ), we have H(X, 7) = F'L%.
Hence H'(X,u(F)) = F'L' = H' (X,y).

§ F21?
(c) H*(X,(F)) = E3° = E20 = = 3577 = F2I2,
F°L?  H*(X,Z7)
- F'L2 F1[2

Since 0 = E;*® - Ey' - By ™' =0, Ey' = EL! =

Since 0 = E9? = %2 = , we have H%(X,.7) = F'L2.
F'L?

R
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Fl 2
Since 0 — F2L? - F11? — 733
0— HX(X,(F)) = H*(X,F) = E3"' =0
is exact. By E3' = ker(dy' : Ey' — E3°) = ker(H' (X, R'(.F)) — H3(X,(F))),
we have that
0— H*(X,u(F)) - H*(X,.F) — H (X, R"(F)) - H*(X,(F))

is exact. O

— 0 is exact,

Example 3.18. Grothendieck [Gro57, 3.8.3] gives an example such that
H?*(X,(F)) =0and H*(X, Z) = Z.

Let X = A2, Y1 = Z(2? +y* - 1), Yo = Z(2®> =22+ 4?), Y = Y1 UYs. Then
Y; and Y3 are irreducible and Y3 NYs = {(3, @), (3, —?)} Let Zx be the locally
constant sheaf on X associated to Z. If j : FF — X is the inclusion of a closed set,
then we define Zp = j.(Zx|F). If i : U — X is the inclusion of an open set, then
we define Zy = i/(Zx |U).

(1) H*(X,Zx\y) ~ H'(X,Zy). From the short exact sequence

0—=Zx\y > Zx —Zy —0,
we obtain a long exact sequence
= HY(X,Zx) = H'(X,Zy) = H*(X,Zx\y) = H*(X,Zx) — -+

Since X is irreducible, by Example 2.10, we have H'(X,Zx) = 0 and H?(X,Zx) =
0. Then H*(X,Zx\y) ~ HY (X, Zy).
(2) HY(X,Zy) ~ Z. From the short exact sequence

0—Zy — Zyl @Z)@ — Zylmy2 —0

we obtain a long exact sequence

s HYX, Zy, ®Zy,) LN HY(X,Zy,ny,) — H (X, Zy) = HYX, Zy,®Zy,) — - -

Where HO(X, Zy, @ Zy,) ~ H(X, Zy,) ® H(X, Zy,) = T(X, Zy,) ® T(X, Zy,) ~
Z®Z. Since Y1NY3 has two connected components, H(X, Zy, ny,) = I'(X, Zy,ny,) =~
Z®Z. Themap f:Z®Z — Z D Z is defined as f(m,n) = (m —n,m —n) for
all m,n € Z. By Example 2.10, H'(X, Zy, ® Zy,) ~ HY(X,Zy,) ® HY(X, Zy,) ~
B 1 B YN

0@ 0=0. Hence, H' (X, Zy) = coker(f) Tm(f) = Z

It follows from (1)(2) that H*(X,Zx\y) ~ H (X, Zy) ~ Z.

(3) Let U be an open set such that |[U NY; NYa| < 1, we calculate H*(U, Zy\y)-

From the short exact sequence

0— ZU\Y — Zy — Zyny — 0,
we obtain a long exact sequence
0 — H(U,Zy\y) — H(U,Zy) % HY(U, Zuny) = H (U, Zyny) — H' (U, Zy) — -+

where HY(U, Zy7) ~ Z and by Example 2.10, H'(U, Zy) = 0.
(3a) Suppose UNY; # 0, UNYy #Pand UNY; NYs = 0. Then UNY has two

connected components, HY(U, Zyny) = Z & Z. Also g(m) = (m,m) for all m € Z.

ZoZ
Hence H' (U, Zy\y) ~ % ~ 7.
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(3b) Suppose UNY; #Bor UNYs #Bor UNY1NYy # 0. Then UNY
has at most one connected component. If UNY = (), then H'(U, Zyny) = 0
and hence H'(U, Zy\y) = 0; If UNY has only one connected component, then
H(U,Zyny) =7, g = Idz and hence HY(U,Zy\y) = 0.

(4) We show that H' (X, R't(Zx\y)) ~ Z. Let % = (U;)ic1 be an open covering

such that there exists a unique a € I such that (%, @) € U,; there exists a unique
b€ I,b+# asuch that (3, —@) € Up; foralli € T\{a,b}, U;NY; =0 or U;NYs = 0.

Then U; satisfies (3b) for all i € I.
Consider the Cech complex

0 1 d® 1 1 d' 2 1
C (%, R (Zx\y)) — C(%,R (Zx\y)) — C(U, R (Zx\y)) = - .
Then

OO(%a RlL(ZX\Y)) = lepre(Uiv RlL(ZX\Y))
i€
~ T[] H'(Ui, Zy,\y) by Lemma 3.5
i€l
= 0 by (3b)
CH %, R (Zx\y)) = 1;[ Core(Us NUj, R'(Zx\y )
i<j
>~ H HI(U1 N Uj, ZUiﬁUj\Y) by Lemma 3.5
i<j
~ Hl(UaﬂUb,ZUSmUt\y) by (3b)
~ 7 by (3a)

For all i € I'\ {a,b}, U; N U, N U, satisfies (3b), then

Cz(%, RIL(ZX\y)) = .<1—1<k Fpm(Ul‘ n Uj N Uy, Rlb(Zx\y))
i<j
~ H kHl(Ui N Uj N Uk, ZUiﬂUjﬁUk\Y) by Lemma 3.5
1<j<
= 0 by (3b)

. 0 1 Ny
Then the the Cech complex becomes 0+ Z 25 0 — - - - and hence HY (X, R'W(Zx\y)) ~
Z.
(5) Finally, we show that H?(X,.(Zx\y)) = 0. By Theorem 3.16(c), we have a

commutative diagram with exact rows

0 —— H*(X,u(F)) — H*(X,F) — H' (X, R\W(F)) — H3(X,(F))

0 —— H?*(X,u(F)) Z Z 0

(1)(2) (4) dim(X)=2

Therefore H%(X,(Zx\y)) = 0.
To summarize, let .# = Zx\y, we have H*(X,((F)) =0 # H*(X, F) = L.



THREE LECTURES ON SHEAF COHOMOLOGY 19

REFERENCES

[Gro57] Alexander Grothendieck, Sur quelques points d’algébre homologique, T6hoku Math. J.
(2) 9 (1957), 119-221. MR 0102537 11, 117

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977,
Graduate Texts in Mathematics, No. 52. MR 0463157 11

DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, 243 DAXUE ROAD, SHANTOU, GUANG-
DONG, CHINA 515063
E-mail address: wuzhengyao@stu.edu.cn



	1. Nov 3, Definition of sheaf cohomology
	2. Nov 10, Sheaf cohomology and flasque resolution
	3. Nov 17, Sheaf cohomology and Cech cohomology
	References

